moo-rs
Evolution is a mystery
Overview
moo-rs
is a project for solving multi-objective optimization problems with evolutionary algorithms, combining:
- moors: a pure-Rust crate for high-performance implementations of genetic algorithms
- pymoors: a Python extension crate (via pyo3) exposing
moors
algorithms with a Pythonic API
Inspired by the amazing Python project pymoo, moo-rs
delivers both the speed of Rust and the ease-of-use of Python.
Quickstart
The knapsack problem is a classic combinatorial optimization challenge where you must select a subset of items, each with a given weight and value, to include in a fixed‐capacity knapsack so as to maximize total value. It requires balancing the trade‐off between item weights and values under a strict weight constraint.
In this small example, the algorithm finds a single solution on the Pareto front: selecting the items (A, D, E), with a profit of 7 and a quality of 15. This means there is no other combination that can match or exceed both objectives without exceeding the knapsack capacity (7).
use ndarray::{Array1, Array2, Axis, stack};
use moors::{
algorithms::{AlgorithmError, Nsga2Builder},
duplicates::ExactDuplicatesCleaner,
operators::{
crossover::SinglePointBinaryCrossover, mutation::BitFlipMutation,
sampling::RandomSamplingBinary,
},
};
// problem data
const WEIGHTS: [f64; 5] = [12.0, 2.0, 1.0, 4.0, 10.0];
const VALUES: [f64; 5] = [4.0, 2.0, 1.0, 5.0, 3.0];
const CAPACITY: f64 = 15.0;
/// Compute multi-objective fitness [–total_value, total_weight]
/// Returns an Array2<f64> of shape (population_size, 2)
fn fitness_knapsack(population_genes: &Array2<f64>) -> Array2<f64> {
let weights_arr = Array1::from_vec(WEIGHTS.to_vec());
let values_arr = Array1::from_vec(VALUES.to_vec());
let total_values = population_genes.dot(&values_arr);
let total_weights = population_genes.dot(&weights_arr);
// stack two columns: [-total_values, total_weights]
stack(Axis(1), &[(-&total_values).view(), total_weights.view()]).expect("stack failed")
}
fn constraints_knapsack(population_genes: &Array2<f64>) -> Array1<f64> {
let weights_arr = Array1::from_vec(WEIGHTS.to_vec());
population_genes.dot(&weights_arr) - CAPACITY
}
fn main() -> Result<(), AlgorithmError> {
// build the NSGA-II algorithm
let mut algorithm = Nsga2Builder::default()
.fitness_fn(fitness_knapsack)
.constraints_fn(constraints_knapsack)
.sampler(RandomSamplingBinary::new())
.crossover(SinglePointBinaryCrossover::new())
.mutation(BitFlipMutation::new(0.5))
.duplicates_cleaner(ExactDuplicatesCleaner::new())
.num_vars(5)
.population_size(100)
.crossover_rate(0.9)
.mutation_rate(0.1)
.num_offsprings(32)
.num_iterations(2)
.build()?;
algorithm.run()?;
let population = algorithm.population()?;
println!("Done! Population size: {}", population.len());
Ok(())
}
import numpy as np
from pymoors import (
Nsga2,
RandomSamplingBinary,
BitFlipMutation,
SinglePointBinaryCrossover,
ExactDuplicatesCleaner,
)
from pymoors.typing import TwoDArray
PROFITS = np.array([2, 3, 6, 1, 4])
QUALITIES = np.array([5, 2, 1, 6, 4])
WEIGHTS = np.array([2, 3, 6, 2, 3])
CAPACITY = 7
def knapsack_fitness(genes: TwoDArray) -> TwoDArray:
# Calculate total profit
profit_sum = np.sum(PROFITS * genes, axis=1, keepdims=True)
# Calculate total quality
quality_sum = np.sum(QUALITIES * genes, axis=1, keepdims=True)
# We want to maximize profit and quality,
# so in pymoors we minimize the negative values
f1 = -profit_sum
f2 = -quality_sum
return np.column_stack([f1, f2])
def knapsack_constraint(genes: TwoDArray) -> TwoDArray:
# Calculate total weight
weight_sum = np.sum(WEIGHTS * genes, axis=1, keepdims=True)
# Inequality constraint: weight_sum <= capacity
return weight_sum - CAPACITY
algorithm = Nsga2(
sampler=RandomSamplingBinary(),
crossover=SinglePointBinaryCrossover(),
mutation=BitFlipMutation(gene_mutation_rate=0.5),
fitness_fn=knapsack_fitness,
constraints_fn=knapsack_constraint,
duplicates_cleaner=ExactDuplicatesCleaner(),
n_vars=5,
population_size=32,
num_offsprings=32,
num_iterations=10,
mutation_rate=0.1,
crossover_rate=0.9,
keep_infeasible=False,
)
algorithm.run()
pop = algorithm.population
# Get genes
>>> pop.genes
array([[1., 0., 0., 1., 1.],
[0., 1., 0., 0., 1.],
[1., 1., 0., 1., 0.],
...])
# Get fitness
>>> pop.fitness
array([[ -7., -15.],
[ -7., -6.],
[ -6., -13.],
...])
# Get constraints evaluation
>>> pop.constraints
array([[ 0.],
[-1.],
[ 0.],
...])
# Get rank
>>> pop.rank
array([0, 1, 1, 2, ...], dtype=uint64)
# Get best individuals
>>> pop.best
[<pymoors.schemas.Individual object at 0x...>]
>>> pop.best[0].genes
array([1., 0., 0., 1., 1.])
>>> pop.best[0].fitness
array([ -7., -15.])
>>> pop.best[0].constraints
array([0.])